【论文整理】model-based control Model Learning and Model-predictive Control (MPC)

已标记关键词 清除标记
相关推荐
Model predictive control (MPC) has a long history in the field of control en- gineering. It is one of the few areas that has received on-going interest from researchers in both the industrial and academic communities. Four major as- pects of model predictive control make the design methodology attractive to both practitioners and academics. The first aspect is the design formulation, which uses a completely multivariable system framework where the perfor- mance parameters of the multivariable control system are related to the engi- neering aspects of the system; hence, they can be understood and ‘tuned’ by engineers. The second aspect is the ability of the method to handle both ‘soft’ constraints and hard constraints in a multivariable control framework. This is particularly attractive to industry where tight profit margins and limits on the process operation are inevitably present. The third aspect is the ability to perform on-line process optimization. The fourth aspect is the simplicity of the design framework in handling all these complex issues. This book gives an introduction to model predictive control, and recent developments in design and implementation. Beginning with an overview of the field, the book will systematically cover topics in receding horizon con- trol, MPC design formulations, constrained control, Laguerre-function-based predictive control, predictive control using exponential data weighting, refor- mulation of classical predictive control, tuning of predictive control, as well as simulation and implementation using MATLAB and SIMULINK as a platform. Both continuous-time and discrete-time model predictive control is presented in a similar framework.
In this thesis we consider the problem of designing and implementing Model Predictive Controllers (MPC) for stabilizing the dynamics of an autonomous ground vehicle. For such a class of systems, the non-linear dynamics and the fast sampling time limit the real-time implementation of MPC algorithms to local and linear operating regions. This phenomenon becomes more relevant when using the limited computational resources of a standard rapid prototyping system for automotive applications. In this thesis we first study the design and the implementation of a nonlinear MPC controller for an Active Font Steering (AFS) problem. At each time step a trajectory is assumed to be known over a finite horizon, and the nonlinear MPC controller computes the front steering angle in order to follow the trajectory on slippery roads at the highest possible entry speed. We demonstrate that experimental tests can be performed only at low vehicle speed on a dSPACE rapid prototyping system with a frequency of 20 Hz. Then, we propose a low complexity MPC algorithm which is real-time capable for wider operating range of the state and input space (i.e., high vehicle speed and large slip angles). The MPC control algorithm is based on successive on-line linearizations of the nonlinear vehicle model (LTV MPC). We study performance and stability of the proposed MPC scheme. Performance is improved through an ad hoc stabilizing state and input constraints arising from a careful study of the vehicle nonlinearities. The stability of the LTV MPC is enforced by means of an additional convex constraint to the finite time optimization problem. We used the proposed LTV MPC algorithm in order to design AFS controllers and combined steering and braking controllers. We validated the proposed AFS and combined steering and braking MPC algorithms in real-time, on a passenger vehicle equipped with a dSPACE rapid prototyping system. Experiments have been performed in a testing center equipped with snowy and icy tr
©️2020 CSDN 皮肤主题: 代码科技 设计师:Amelia_0503 返回首页